Topological Data Analysis

Introduction

Adrien Jamelot
Instituto Superior Técnico

February 22, 2021

Introduction to Data Analysis - The classical Machine Learning Pipeline (1/3)

A bit of Linear Algebra + A bit of Statistics $=$ Machine Learning Phenomena are described through a set of features $F=\left\{X_{1}, X_{2}, \ldots, X_{f}\right\}$ and an outcome Y Our objective is to learn how features relate to the outcome.
We need data!

Patient Number	$\mathrm{F}_{1}:$ Age	$\mathrm{F}_{2}=$ Size	$\mathrm{F}_{3}=$ Weight	$\mathrm{Y}=$ Maximum velocity
1	10	130	35	15
2	90	160	55	6
\ldots	\ldots	\ldots	\ldots	\ldots
n	30	175	65	38
Table: Caption				

Introduction to Data Analysis - The classical Machine Learning Pipeline (2/3)

data: $X \in \operatorname{Mat}_{n, f}(\mathrm{R})$ Try to extract relevant features (PCA, correlation tests, ...) Apply and tune a machine learning algorithm (classification: kNN, random forests, SVM/ regression: Linear/Ridge/Lasso \rightarrow Least Squares)

Introduction to Data Analysis - Example: The MNIST dataset (3/3)

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

TDA - Hausdorff Distance

$\mathrm{d}_{H}(A, B)=\max (\sup \{d(b, A), b \in B\}, \sup \{d(a, B), a \in A\})$
A bit better?
$d_{G H}\left(M_{1}, M_{2}\right)=\inf \left\{r \geq 0: \exists(M, \rho), C_{1}, C_{2}\right.$ compacts isometric to M_{1}, M_{2} s.t $\left.d_{H}\left(C_{1}, C_{2}\right) \leq r\right\}$

TDA - Simplicial Complexes

Simplicial complexes \simeq Convex Hull of a set of points.
$\sigma=\left[x_{0}, \ldots, x_{k}\right]$: k-simplicial complex

1-simplex

Figure: Some low-dimensional simplicial complexes

TDA - From data to complexes

Vietori-Rips complex —— Cech Complex

$$
\operatorname{Rips}_{\alpha}(\mathrm{X}) \subseteq \operatorname{Cech}_{\alpha}(\mathrm{X}) \subseteq \operatorname{Rips}_{2 \alpha}(\mathrm{X})
$$

TDA - The nerve of a cover

Definition (Nerve of a cover)

$\mathcal{U}=\left(U_{i}\right)_{i \in I}$ cover of X
$C(\mathcal{U})=\left\{\sigma=\left[U_{i 0}, \ldots, U_{i_{k}}\right]: \bigcap_{j=0}^{k} U_{i j} \neq \emptyset\right\}$

Figure: Nerve of U_{1}, U_{2}, U_{3}

TDA - Homotopy (1/4)

$$
\begin{aligned}
& \text { Definition (Homotopic maps) } \\
& f_{0}, f_{1}: X \rightarrow Y \text { continuous are homotopic if } \\
& \exists H \in C(X \times[0,1], Y) \text { s.t } \forall x \in X, H(x, 0)=f_{0}(x) \text { and } H(x, 1)=f_{1}(x)
\end{aligned}
$$

TDA - Homotopy (2/4)

Definition (Homotopy equivalent spaces)

X, Y are homotopy equivalent if $\exists f, g: X \rightarrow Y$ s.t $f \circ g$ and $g \circ f$ are homotopic respectively to $i d_{Y}$ and $i d_{X}$

Figure: The surface of a mug and a torus are homotopy equivalent

TDA - Homotopy (3/4)

Definition (Homotopy equivalent spaces)
X, Y are homotopy equivalent if $\exists f: X \rightarrow Y, g: Y \rightarrow X$ s.t $f \circ g$ and $g \circ f$ are homotopic respectively to $i d_{Y}$ and $i d_{X}$

Property

X, Y homeomorphic $\Rightarrow X, Y$ homotopy equivalent

TDA - Homotopy (4/4)

Definition (Contractible space)

X is contractible if it is homotopy equivalent to a point

Examples

- Balls
- Convex sets

TDA - Nerve theorem

Definition (Nerve of a cover)

$\mathcal{U}=\left(U_{i}\right)_{i \in I}$ cover of X $C(\mathcal{U})=\left\{\sigma=\left[U_{i 0}, \ldots, U_{i_{k}}\right]: \bigcap_{j=0}^{k} U_{i j} \neq \emptyset\right\}$

Theorem

$\mathcal{U}=\left(U_{i}\right)_{\in I}$ cover of X topological space by open sets such that $\forall J \subset I, \bigcap_{j \in J} U_{j}$ is either empty or contractible $\Rightarrow X$ is homotopy equivalent to $C(\mathcal{U})$ the nerve of \mathcal{U}

Consequence of the Nerve theorem

X set of points, $\operatorname{Cech}_{\alpha}(\mathrm{X})$ is homotopy equivalent to $\bigcup_{x \in \mathrm{X}} B(x, \alpha)$

Figure: The simplicial complex preserves the structure of the union of balls

Generalization: notion of filtration

X set of points, $\operatorname{Cech}_{\alpha}(\mathrm{X})$ is homotopy equivalent to $\bigcup_{x \in \mathrm{X}} B(x, \alpha)$

Figure: A binary image

Figure: Its filtration by erosion

Homology - Chains

Definition (k-chain)

$C_{k}(K)=\operatorname{span}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right\}$ where $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right\}$ is the set of k-simplices of K

Figure: 0 to 2 dimensional chains

Homology - Boundaries

Definition (Boundary of a k-chain)

$\sigma=\left[v_{0}, \ldots, v_{k}\right]$ k-simplex
$\partial_{k}(\sigma)=\sum_{i=0}^{k}(-1)^{i}\left[v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right]$

Figure: Boundaries of the triangle, the edge, and the vertex

Homology - Cycles

Definition (k-cycles)

k -chain having boundary 0

Some notations

- Space of k-chains: $C_{k}(K)$
- Space of k-boundaries: $B_{k}(K)=\operatorname{Im}\left(\partial_{k+1}\right)$
- Space of k-cycles: $Z_{k}(K)=\operatorname{Ker}\left(\partial_{k}\right)$

Properties

- $\forall k \geq 1, \partial_{k-1} \circ \partial_{k}=0$
- $B_{k}(K) \subseteq Z_{k}(K) \subseteq C_{k}(K)$

Homology - k-th simplicial homology group of K

Definition (Homologous cycles)
Two cycles are homologous if they differ by a boundary
Definition (k-th simplicial homology group of K)
Quotient vector space $H_{k}(K)=Z_{k}(K) / B_{k}(K)$. Its elements are the equivalence classes of homologous classes.

Definition (k-th Betti number)

$\beta_{k}(K)=\operatorname{dim}\left(H_{k}(K)\right)$

Homology - Chains

Definition (k-chain)

$$
C_{k}(K)=\operatorname{span}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right\} \text { where }\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right\} \text { is the set of } k \text {-simplices of } K
$$

Figure: Finding chains, cycles and boundaries...

TDA - The torus example ($1 / 3$)

Figure: The torus and its two 1-cycles

Figure: Simplicial representation of the torus

TDA - The torus example (2/3)

Figure: Simplicial representation of the torus

$$
\begin{aligned}
S & =\left\{A, B, a, b, c, x_{u l}, x_{u r}, x_{b l}, x_{b r}\right\} \\
& =\{A, B, a, b, c, x\} \\
A & =\left[x_{u l}, x_{u r}, x_{b l}\right] \\
B & =\left[x_{u r}, x_{b r}, x_{b l}\right] \\
\partial_{2}(A) & =\left[x_{u r}, x_{b l}\right]-\left[x_{u l}, x_{b l}\right]+\left[x_{u l}, x_{u r}\right] \\
& =c-(-a)+b=a+b+c=\partial_{2}(B)
\end{aligned}
$$

so

$$
B_{1}=\operatorname{span}_{\mathbb{Z}}(a+b+c)
$$

TDA - The torus example ($3 / 3$)

$$
a=[x, x]=b=c
$$

Figure: Simplicial representation of the torus
so

$$
\partial a=x-x=\partial b=\partial c=0
$$

therefore,

$$
\begin{aligned}
& Z_{1}=\operatorname{span}_{\mathbb{Z}}(a, b, c)=\operatorname{span}_{\mathbb{Z}}(a+b+c, b, c) \\
& B_{1}=\operatorname{span}_{\mathbb{Z}}(a+b+c)
\end{aligned}
$$

Now $H_{1}=Z_{1 / B_{1}}=\mathbb{Z}^{2}$
The first Betti number of the torus is
2 , in agreement with the figure!

Homology - Invariants

Definition (Euler characteristic)

S simplicial complex
$\chi(S)=\sum(-1)^{i} k_{i}$ where k_{i} is the number of simplexes of dimension i

Examples (Polyhedrons)

Tetrahedron: 4 vertices, 6 edges, 4 faces $\rightarrow \chi=4-6+4=2$
Cube: 8 vertices, 12 edges, 6 faces $\rightarrow \chi=8-12+6=2$

TDA - Persistence Homology

Figure: Peristent Homology for a continuous signal

TDA - Persistence Homology

Figure: Step 1

TDA - Persistence Homology

Figure: Step 2

TDA - Persistence Homology

Figure: Step 3

TDA - Persistence Homology

Figure: Step 4

References

Chazal, Frédéric and Bertrand Michel (Oct. 11, 2017). "An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists". In:
Garin, Adélie and Guillaume Tauzin (Oct. 22, 2019). "A Topological "Reading" Lesson: Classification of MNIST using TDA". In: arXiv:1910.08345 [cs, math, stat]. URL: http://arxiv.org/abs/1910.08345.
Ghrist, Robert (Sept. 1, 2014). Elementary Applied Topology. 1st edition.

- (Nov. 15, 2018). "Homological algebra and data". In: IAS/Park City Mathematics Series. Vol. 25. American Mathematical Society, pp. 273-325. DOI: $10.1090 /$ pcms/025/06. URL: http://www.ams.org/pcms/025.
Insights into Mathematics (Dec. 10, 2012). Delta complexes, Betti numbers and torsion Algebraic Topology - NJ Wildberger. URL: https://www. youtube.com/watch?v=NgrIPPqYKjQ.
Koplik, Gary (Oct. 29, 2019). Persistent Homology: A Non-Mathy Introduction with Examples. Medium. URL: https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0.

