Topological Data Analysis

Adrien Jamelot

Instituto Superior Técnico

February 22, 2021

Introduction to Data Analysis - The classical Machine Learning Pipeline (1/3)

A bit of Linear Algebra + A bit of Statistics = Machine Learning Phenomena are described through a set of **features** $F = \{X_1, X_2, ..., X_f\}$ and an **outcome** Y Our objective is to learn how features relate to the outcome. We need data!

Patient Number	F_1 : Age	$F_2 = Size$	$F_3 = W eight$	Y=Maximum velocity
1	10	130	35	15
2	90	160	55	6
n	30	175	65	38

Table: Caption

Introduction to Data Analysis - The classical Machine Learning Pipeline (2/3)

data: $X \in Mat_{n,f}(R)$ Try to extract relevant features (PCA, correlation tests, ...) Apply and tune a machine learning algorithm (classification: kNN, random forests, SVM/ regression: Linear/Ridge/Lasso \rightarrow Least Squares) Introduction to Data Analysis - Example: The MNIST dataset (3/3)

 \mathbf{X} / / 2222222222222222 3**33**33333333333333333333 666666666666666666666 **なフクコフ**フ イ**クハ** ハ **フ ユ** ク フ フ 8 **99999999999999**

TDA - Hausdorff Distance

 $d_{H}(A,B) = max (sup \{d(b,A), b \in B\}, sup \{d(a,B), a \in A\})$ A bit better?

 $d_{GH}(M_1, M_2) = inf\{r \ge 0 : \exists (M, \rho), C_1, C_2 \text{ compacts isometric to } M_1, M_2 \text{ s.t } d_H(C_1, C_2) \le r\}$

TDA - Simplicial Complexes

Simplicial complexes \simeq Convex Hull of a set of points. $\sigma = [x_0, \ldots, x_k]$: k-simplicial complex

Figure: Some low-dimensional simplicial complexes

TDA - From data to complexes

Vietori-Rips complex —— Cech Complex

 $\mathit{Rips}_{\alpha}(X) \subseteq \mathit{Cech}_{\alpha}(X) \subseteq \mathit{Rips}_{2\alpha}(X)$

Figure: Left: $Cech_{\alpha}(X)$, Right: $Rips_{2\alpha}(X)$

TDA - The nerve of a cover

Definition (Nerve of a cover)

 $\mathcal{U} = (U_i)_{i \in I} \text{ cover of } \mathsf{X}$ $C(\mathcal{U}) = \{ \sigma = [U_{i_0}, \dots, U_{i_k}] : \bigcap_{j=0}^k U_{ij} \neq \emptyset \}$

Figure: Nerve of U_1, U_2, U_3

Definition (Homotopic maps)

 $f_0, f_1 : X \to Y$ continuous are homotopic if $\exists H \in C(X \times [0, 1], Y) \text{ s.t } \forall x \in X, H(x, 0) = f_0(x) \text{ and } H(x, 1) = f_1(x)$

TDA - Homotopy (2/4)

Definition (Homotopy equivalent spaces)

X,Y are homotopy equivalent if $\exists f, g : X \to Y$ s.t $f \circ g$ and $g \circ f$ are homotopic respectively to id_Y and id_X

Figure: The surface of a mug and a torus are homotopy equivalent

Definition (Homotopy equivalent spaces)

X,Y are homotopy equivalent if $\exists f : X \to Y, g : Y \to X$ s.t $f \circ g$ and $g \circ f$ are homotopic respectively to id_Y and id_X

Property

X,Y homeomorphic \Rightarrow X,Y homotopy equivalent

Definition (Contractible space)

X is contractible if it is homotopy equivalent to a point

Examples Balls Convex sets

Definition (Nerve of a cover)

 $\mathcal{U} = (U_i)_{i \in I} \text{ cover of } \mathsf{X}$ $C(\mathcal{U}) = \{ \sigma = [U_{i_0}, \dots, U_{i_k}] : \bigcap_{j=0}^k U_{ij} \neq \emptyset \}$

Theorem

 $\mathcal{U} = (U_i)_{\in I}$ cover of X topological space by open sets such that $\forall J \subset I, \bigcap_{j \in J} U_j$ is either empty or contractible $\Rightarrow X$ is homotopy equivalent to $C(\mathcal{U})$ the nerve of \mathcal{U}

Consequence of the Nerve theorem

X set of points, $Cech_{\alpha}(X)$ is homotopy equivalent to $\bigcup_{x \in X} B(x, \alpha)$

Figure: The simplicial complex preserves the structure of the union of balls

Generalization: notion of filtration

X set of points, $Cech_{\alpha}(X)$ is homotopy equivalent to $\bigcup_{x \in X} B(x, \alpha)$

Figure: A binary image

Figure: Its filtration by erosion

Homology - Chains

Definition (k-chain)

 $C_k(K) = span\{\sigma_1, \sigma_2, \dots, \sigma_p\}$ where $\{\sigma_1, \sigma_2, \dots, \sigma_p\}$ is the set of k-simplices of K

Figure: 0 to 2 dimensional chains

Homology - Boundaries

Definition (Boundary of a k-chain)

 $\begin{aligned} \sigma &= [v_0, \dots, v_k] \text{ k-simplex} \\ \partial_k(\sigma) &= \sum_{i=0}^k (-1)^i [v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_k] \end{aligned}$

Figure: Boundaries of the triangle, the edge, and the vertex

Homology - Cycles

Definition (k-cycles)

k-chain having boundary 0

Some notations

- Space of k-chains: $C_k(K)$
- Space of k-boundaries: $B_k(K) = Im(\partial_{k+1})$
- Space of k-cycles: $Z_k(K) = Ker(\partial_k)$

Properties

- $\forall k \geq 1, \partial_{k-1} \circ \partial_k = 0$
- $B_k(K) \subseteq Z_k(K) \subseteq C_k(K)$

Homology - k-th simplicial homology group of K

Definition (Homologous cycles)

Two cycles are homologous if they differ by a boundary

Definition (k-th simplicial homology group of K)

Quotient vector space $H_k(K) = Z_k(K)/B_k(K)$. Its elements are the equivalence classes of homologous classes.

Definition (k-th Betti number)

 $\beta_k(K) = \dim(H_k(K))$

Homology - Chains

Definition (k-chain)

 $C_k(K) = span\{\sigma_1, \sigma_2, \dots, \sigma_p\}$ where $\{\sigma_1, \sigma_2, \dots, \sigma_p\}$ is the set of k-simplices of K

Figure: Finding chains, cycles and boundaries...

TDA - The torus example (1/3)

Figure: The torus and its two 1-cycles

Figure: Simplicial representation of the torus

TDA - The torus example (2/3)

Figure: Simplicial representation of the torus

$$S = \{A, B, a, b, c, x_{ul}, x_{ur}, x_{bl}, x_{br}\}$$

= $\{A, B, a, b, c, x\}$
$$A = [x_{ul}, x_{ur}, x_{bl}]$$

$$B = [x_{ur}, x_{br}, x_{bl}]$$

$$\partial_2(A) = [x_{ur}, x_{bl}] - [x_{ul}, x_{bl}] + [x_{ul}, x_{ur}]$$

= $c - (-a) + b = a + b + c = \partial_2(B)$

so

$$B_1 = span_{\mathbb{Z}}(a+b+c)$$

TDA - The torus example (3/3)

$$a = [x, x] = b = c$$

so
 $\partial a = x - x = \partial b = \partial c = 0$
therefore,

$$Z_1 = span_{\mathbb{Z}}(a, b, c) = span_{\mathbb{Z}}(a + b + c, b, c)$$

 $B_1 = span_{\mathbb{Z}}(a + b + c)$

Now $H_1 = Z_{1/B_1} = \mathbb{Z}^2$ The first Betti number of the torus is 2, in agreement with the figure!

Definition (Euler characteristic)

S simplicial complex $\chi(S) = \sum (-1)^i k_i$ where k_i is the number of simplexes of dimension i

Examples (Polyhedrons)

Tetrahedron: 4 vertices, 6 edges, 4 faces $\rightarrow \chi = 4 - 6 + 4 = 2$ Cube: 8 vertices, 12 edges, 6 faces $\rightarrow \chi = 8 - 12 + 6 = 2$

Figure: Peristent Homology for a continuous signal

Figure: Step 1

Figure: Step 2

Figure: Step 3

Figure: Step 4

References

- Chazal, Frédéric and Bertrand Michel (Oct. 11, 2017). "An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists". In:
- Garin, Adélie and Guillaume Tauzin (Oct. 22, 2019). "A Topological "Reading" Lesson: Classification of MNIST using TDA". In: *arXiv:1910.08345 [cs, math, stat]*. URL: http://arxiv.org/abs/1910.08345.
 - Ghrist, Robert (Sept. 1, 2014). Elementary Applied Topology. 1st edition.
 - (Nov. 15, 2018). "Homological algebra and data". In: IAS/Park City Mathematics Series.
 Vol. 25. American Mathematical Society, pp. 273–325. DOI: 10.1090/pcms/025/06. URL: http://www.ams.org/pcms/025.
- Insights into Mathematics (Dec. 10, 2012). Delta complexes, Betti numbers and torsion Algebraic Topology NJ Wildberger. URL:

https://www.youtube.com/watch?v=NgrIPPqYKjQ.

Koplik, Gary (Oct. 29, 2019). Persistent Homology: A Non-Mathy Introduction with Examples. Medium. URL: https://towardsdatascience.com/persistent-homologywith-examples-1974d4b9c3d0.